
Journal o f  Statistical Physics, Vol. 76, Nos. I/2. 1994 

On the Brownian Motion of a Massive Sphere 
Suspended in a Hard-Sphere Fluid. 
lI. Molecular Dynamics Estimates of the 
Friction Coefficient 

Lyd6ric Bocquet, 1 Jean-Pierre Hansen,' and Jaroslaw Piasecki"2 

Received October 29, 1993; f inal March 1, 1994 

The friction coefficient 7 exerted by a hard-sphere fluid on an infinitely massive 
Brownian sphere is calculated for several size ratios 27/a, where Z' and a are the 
diameters of the Brownian and fluid spheres, respectively. The exact microscopic 
expression derived in part I of this work from kinetic theory is transformed and 
shown to be proportional to the time integral of the autocorrelation function of 
the momentum transferred from the fluid to the Brownian sphere during instan- 
taneous collisions. Three different methods are described to extract the friction 
coefficient from molecular dynamics simulations carried out on finite systems. 
The three independent methods lead to estimates of Y which agree within 
statistical errors (typically 5%). The results are compared to the predictions of 
Enskog theory and of the hydrodynamic Stokes law. The former breaks down 
as the size ratio and/or the packing fraction of the fluid increase. Somewhat sur- 
prisingly, Stokes' law is found to hold with stick boundary conditions, in the 
range 1 ~< Z'/a ~< 4.5 explored in the present simulations, with a hydrodynamic 
diameter d =  2". The analysis of the molecular dynamics data on the basis of 
Stokes' law with slip boundary conditions is less conclusive, although the right 
trend is found as L'/tr increases. 
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1. INTRODUCTION 

The calculation of the friction coefficient ~ exerted by a fluid on a moving 
test particle is a classic problem, which was first solved, for a spherical 
particle, by Stokes from a macroscopic (or hydrodynamic) point of view 
(see, e.g., ref. 1), which applies when the suspended test particle is much 
larger than the molecules of the suspending fluid (or bath). However, when 
the size of the test particle is comparable to that of the bath molecules, a 
microscopic, statistical, approach becomes necessary. This has been the 
object of a large body of work, starting with the pioneering paper of 
Kirkwood, t21 who showed that the friction coefficient is given by a Green- 
Kubo formula, in terms of the time integral of the autocorrelation function 
of the instantaneous total force exerted by the bath molecules on the test 
particle, which we shall henceforth refer to as a Brownian particle, irrespec- 
tive of its size and mass. A correct application of Kirkwood's formula poses 
some delicate problems associated with the order of thermodynamic and 
infinite-time limits, as recently reemphasized by Espafiol and Zflfiiga. ~31 

In this series of papers we consider the model case where the Brownian 
and bath particles are elastic hard spheres. The singular nature of the 
"forces" during the instantaneous collisions requires a specific treatment 
which differs considerably from situations involving continuous dynamics. 
Despite these complications, the advantage of considering hard spheres is 
that kinetic theory for this model is in a much more advanced stage, at 
high densities, than for systems with continuous interactions (see, e.g., 
ref. 4). From a computational point of view, molecular dynamics (MD) 
simulations, of the type to be used in this paper, yield exact phase space 
trajectories, up to computer roundoff errors, for hard spheres, whereas 
approximate, finite-time-step algorithms have to be used to integrate the 
coupled equations of motion of particles interacting via continuous forces, tSI 

In the first paper of this series, ~6~ we used an expansion in powers of 
the square root of the mass ratio 

~= (I) 

where m and M arc thc bath and Brownian particle masscs, to dcrivc thc 
Fokkcr-Planck equation governing the timc evolution of the Brownian 
particle distribution, from the exact hard-sphcre hierarchy of kinetic 
cquations. Thc following expression was obtained for the friction coefficient 
7 = M~ occurring in the Fokkcr-Planck equation: 

7=7 ,  +?2 (2) 

71 = ~ (2nmkB T) 1/2 pcq (3a) 
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and 

1 r ~  
J o  dr (~+(0) .~_( - r ) )~eq ,X~ (3b) ?2 = 3kB T 

In Eq. (3a), a and _r are the bath and Brownian particle diameters and 
p~q((a + Z')/2) is the contact value of the equilibrium density profile of bath 
particles in the field of the fixed Brownian particle. The "forces" appearing 
in Eq. (3b) are defined by 

~:~ = ~ (or 2 Z')2 1 d62m(v,.6)20(T-v,.d)d 

x 6 ( R -  ( - ~ )  6 -  rl) (4) 

where R is the (fixed) position of the Brownian particle, rl and vl are the 
position and velocity, respectively, of bath particle i at time t, 0 is the 
Heaviside step function, and the integration is over the unit vector 6 along 
the direction joining the centers of the colliding spheres. The force correla- 
tion function in Eq. (3b) involves an equilibrium statistical average of the 
bath in the field of the fixed (i.e., infinite mass) Brownian particle. 

We emphasize that formulas (3) are valid for any size ratio .S/a, and 
are exact to order e; recoil corrections, due to the finiteness of the 
Brownian particle mass M, only come in to order ~2. In the small-e limit, 
which we shall refer to as the Brownian limit, irrespective of the value of 
X/a, the friction coefficient ? is thus independent of M. The first term, 71, 
is the Enskog contribution, 171 while the second, ?z, accounts for dynamical 
correlations, which are not included in the Enskog approximation. 

The object of the present paper is the explicit calculation of V, for 
several size ratios ZIg and densities n of bath particles, by MD simulations. 
In Section 2, the expressions (2)-(4) for ? will be recast in an equivalent 
form, involving a force autocorrelation function, rather than the time- 
displaced correlation of J~+ and o ~_ ; this expression will be the equivalent 
of Kirkwood's formula, ~2) valid for continuous interactions. Three distinct 
routes toward explicit evaluations of y for finite systems via MD simula- 
tions will be described in Sections 3-5. The first method is based on an 
analysis of the relaxation of the total momentum of the bathl31; the second 
route proceeds from an analysis of the Laplace transform of the "force" 
autocorrelation function; while the third approach uses a nonequilibrium 
molecular dynamics (NEMD) procedure to estimate y. Numerical results 
are presented in Section 6 and some final comments are contained in 
Section 7. 
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2. REFORMULATION OF THE EXACT EXPRESSION FOR THE 
FRICTION COEFFICIENT 

The multiple-time-scale expansion in powers of ~, starting from the 
exact hard-sphere hierarchy of kinetic equations, led naturally in ref. 6 to 
the separation (2) of the friction coefficient into the Enskog term ~,~ and the 
dynamical correction Y2, defined by Eqs. (3a)-(3b). A similar expansion 
leads, in the case of continuous interactions between particles, t8) to the 
Kirkwood formula: 

~/= 3 k ~ I o  dr ( ~ ( 0 )  " ~ - ( -  r))ceq I x~ (5) 

which involves the autocorrelation function (ACF) of the total force 
exerted by the bath particles on the Brownian particle. It is tempting to 
extend formula (5) to the case of singular hard-sphere interactions, by 
replacing the continuous force ~-(t) by the momentum transferred from the 
fluid spheres to the infinitely massive Brownian sphere during instantaneous 
collisions, i.e., 

"/= dz ( ~ o ( 0 ) ' ~ o ( - r ) ) , , q t x  ~ (6) 

where 

~o(t) = ~ ( -2m)(v~. f,.)f,. & ( t -  t,.) (7) 
(c} 

The sum on the right-hand side (r.h.s.) of Eq. (7) is over all collisions 
between the immobile Brownian particle and bath particles. Each collision 
is an instantaneous event, taking place at time t,., ~,. = rc/[(s + cr)/2] being 
the unitary vector defining the relative position of the bath particle with 
respect to the center of the Brownian particle at t = t,., and v~ being the 
velocity of the colliding bath particle just before the collision. ~o, as 
defined by Eq. (7), has the physical dimension of a force. Equations (6) and 
(7) have in fact been used in the molecular dynamics work of Alley and 
Alder, ~gJ who assumed the validity of this expression for the friction 
coefficient of a hard-sphere system by an intuitive extension of Kirkwood's 
relation. We are going to prove the validity of the expression (6)-(7) by 
showing its equivalence with the exact result derived from kinetic theory, 
embodied in Eqs. (2)-(3). To that purpose we first carry out the integration 
over angles 6 in Eq. (4), the Brownian particle being assumed to be fixed 
at the origin (R = 0), without loss of generality: 
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~-+ (t) = ~ 2m[vi(t)" ri(t)] z 0( -T-vi(t)" fi(t))  fi(t) 
i 

The "forces" ~-+(t) are nonzero only at the instant of a collision between 
the Brownian particle and a bath particle when the distance of the center 
of the latter from the center of the former (i.e., from the origin) is exactly 
equal to (a + X)/2. Going from the argument [ri(t)l in the 6-function on the 
r.h.s, of Eq. (8) to the time variable, one may rewrite ~-+(t) by summing 
over collisions: 

~-+(t) = ~ (-2m)(vc'f,)fc6-+(t-t,) (9) 
(c)  

where t,., f,., and vc have the same meaning as in Eq. (7). The distributions 
6 -+ on the r.h.s, of Eq. (9) satisfy 

6-+(0 dt = (lOa) 

fo_~ 6-+(t) dt = {O1 (10b) 

The distinction between 6 + and 6 -  stems from the fact that, due to the 
presence of the Heaviside step function O(~vi(t).~i(t)) on the r.h.s, of 
Eq. (8), only incoming (respectively outgoing) particles contribute to ~+ 

In view of the stationary property of equilibrium time-displaced 
correlation functions, the integral on the r.h.s, of Eq. (3b) may be rewritten, 
using Eq. (9), as 

dr (~+(0 )  �9 ~ _ ( - r ) ) l e q  i x I 

lim l f r  f,o~ = dt 
r . . . .  TJ0 

ds~+(t) .~_(s) 

ds a~.6 ( t - t , . ) 6 - ( s - t , . )  
',.(c) 

+ ~ a,.'ac,6+(t--t,.)6-(s-t,.,)} 
( c ) ~  (c ' )  

(11) 



532 Bocquet e t  al. 

where the notation 

ac = -2m(Vc �9 ~,.) ~c (12) 

has been used. Due to the properties (10), the first term on the r.h.s, of 
Eq. (11 ) vanishes, leaving 

dz ( o ~ §  lim -1 N~lrl 
r ~  T ~ a , 'a , ,  (13) 

c = l  c ' = c + l  

where N,.(T) is the number of collisions occurring during the time interval 
[0; T]. If v denotes the collision rate between Brownian and bath particles, 
stationarity implies that the time integral (13) may be cast in the equivalent 
form 

d~ (o~+(0) �9 o~_ ( -  z))leq i xl = v (a,." a,.+k),. (14) 
kffi l  

where the statistical average is over Brownian/bath particle collisions, 
according to the general definition 3 

1 Nc 
( A ) , . =  lim ~ A,. (15) 

Nr ~ 'zo ~ c ,  c = 1 

Proceding along similar lines, one can cast the time integral of the ACF 
appearing in Eq. (6) in the form 

fs dz + (a~" a,.+k)~ (16) 
k = l  

The first term may be explicitly calculated as ~~ 

a" I d~,. I dvr exp{ -flmvZJ2}(vr �9 ~c) 0(v~. ~)  a, 2 
( 5 ) , =  . . . . . .  ~ . . . . . . .  �9 Sd~, .Sdveexp{_f lmvjZ}(vr  

= 8mkB T (17) 

Since the collision frequency v is, for an infinite-mass Brownian particle, 
given by 

V = - -  p e q  _ _  ( 1 8 )  

T h e  ca l cu l a t i ona l  p r o c e d u r e  a n d  n o t a t i o n s  in this  sec t ion  a r e  v e r y  s imi l a r  to those  used  by  

W a i n w r i g h t .  "~ 
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it is clear from direct substitution of Eqs. (17) and (18) into Eqs. (16) and 
(6) that the first term on the r.h.s, of Eq. (16) yields precisely the Enskog 
contribution ),~ given by Eq. (3a). Compar ison of Eqs. (14) and (16) then 
finally shows the equivalence of expressions (2)-(3) and (6) for the friction 
coefficient 7. Equation (6), together with (16), is the most convenient for 
numerical evaluation of  ), via M D  simulations. 

Inconsiderate application of Eq. (6) to a finite system, like those used 
in M D  simulations, yields, however, ) ,= O, as illustrated in Fig. 1, where the 
"time-dependent" friction 

, ( t ) = ~ f o d r  (o~o(O).~o(-Z))teqlX, (19) 

is plotted versus time. This familiar pitfall has to do with an implicit inver- 
sion of limits when finite systems are being considered. As emphasized in 
ref. 3, a correct calculation of ~, requires going first to the thermodynamic 
limit ( N ~  or, V--* ~ ,  n = N/V being held fixed) for each upper integration 
limit t in Eq. (19), before taking the limit t ~ ~ .  Denoting the previously 
defined thermodynamic  limit by limth, we find that the correct (nonzero) 
value of ~ is given by 

7- -  ,lira dr limth (o~0(0). o~ - r ) )  N (20) 

~Z 

ix. 

0 500 1000 1500 vt 

Fig. 1. Normalized "time-dependent" friction l'(t)/Tt versus reduced time vt for a system of 
N= 200 fluid particles, with an effective packing fraction r/e~r = 0.3 (defined in Section 6), and 
a fixed sphere of diameter Z" = a. Here y(t = 0) equals the Enskog value 7~ of the friction coef- 
ficient due to the 6(t) contribution in the force ACF [see the first term in the r.h.s, of 
Eq. (16)]. 
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The importance of the order of limits is illustrated by a simple model 
calculation in Appendix A. Three practical ways of extracing estimates of ), 
from MD simulations are proposed in the three subsequent sections. 

In their MD simulations, Alley and Alder tgl computed 7(t) over a 
shorter time interval compared to the present work; over this interval 
(typically vt ~ 100), 7(t) does not decay to zero, and the authors used the 
known hydrodynamic form of the tail of the velocity autocorrelation func- 
tion to extrapolate their data to infinite time; this procedure results in a 
nonzero value of the friction coefficient. 

3. FRICTION COEFFICIENT FROM THE RELAXATION OF 
FLUID M O M E N T U M  

The first practical method which we have used to estimate 7 from MD 
simulations is that advocated by Espafiol and Zfifiiga, ~3~ based on the 
relaxation of the total fluid momentum P(t). According to their analysis, 
which is essentially equivalent to that sketched in Appendix A, the total 
momentum ACF may be expected to decay exponentially [cf. Eq. (A.6)], 
at least for a sufficiently large test particle fixed at the origin in order for 
the Onsager principle to apply. Logarithmic plots of the ACF should hence 
yield straight lines, the negative slopes of which are directly proportional to 
the friction coefficient y, 

< P(t)" P(0))N] ~, 
- l o g  3NmkBT _]=~mm t =  - l o g  F(t) (21) 

Examples of such plots are shown in Fig. 2. The exponential decay, imply- 
ing a Markovian process, is seen to apply even for a test particle of size 
equal to that of the bath particles (Z'= or). The observed slopes closely 
follow the 1/N size dependence. The resulting values of ~ will be confronted 
with those obtained by the two other methods in Section 6. 

4. FRICTION COEFFICIENT FROM THE LAPLACE 
T R A N S F O R M  OF THE ACF 

We now show that a direct numerical evaluation of the Laplace trans- 
form of the force ACF for a finite system 

fN(z) = e-~'<~o(t)" ~o(0) >N at (22) 
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0 
0 100 200ut  300 400 

Fig. 2. Logarithmic plot of the normalized ACF, F(t), of the total fluid momentum versus 
reduced time yr. From this plot the reduced friction coefficient ),/my is obtained as N times the 
slope of the straight line. The three curves were computed, from bottom to top, with systems 
containing N= 800, 500, and 200 fluid particles, with effective packing fractions qar= 0.24, 
0.37, and 0.3 and a fixed sphere of diameter Z'= 2.5a, 2tr, and tr, respectively. 

also leads to an est imate of the friction coefficient y. Use of Eq. (A.2) and 
integrat ion by parts  yields 

f N ( z ) = - < P ( 0 ) ' P ( 0 ) ) u - z  e " < P ( t ) ' P ( O ) ) u d t  

= - z  e - - " < P ( t ) ' P ( O ) ) u d t  

3k B T)'z 
_ - -  ( 2 3 )  

z + y / N m  

where the "hydrodynamic"  form (A.6) of the momen tum A C F  has been 
used; the lat ter  is expected to apply  at long times, i.e., for small  values of 
the conjugate  variable z. The left-hand side of Eq. (23) may be est imated by 
M D  simulations.  Using definit ion (7) of the force, one obta ins  

f.(z)= e-:'(o~(t) .~(O))Nat 

= v  - - +  ,.., ( a , . - a , . + k e - : l ' - - k - m ) c  (24) 
k = l  

where the collision frequency v is defined in Eq. (18). The quant i ty  on the 
r.h.s, of Eq. (24) may be calculated by M D  for several (real)  values of z, 
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.,~.Y" 

......J 

, , . -  
. . - ."  

0 , I ~ I 
0 200 400 

u / z  
Fig. 3. Inverse of the reduced Laplace transform 3vkBT/fN(Z) versus v/z for various (real) 
frequencies z (crosses). The inverse of the reduced friction coefficient 7~my is obtained by 
extrapolating the fitted straight line to v/z --* 0 {dashed line). Its slope should be equal to I/N 
and thus serves as a check of the simulation. The results presented were obtained for the same 
system as in Fig. 1. A straight line of slope 1/200 is shown for comparison with the simulation 
data. 

and the results fitted to the r.h.s, of Eq. (23), thus yielding a direct estimate 
of the unknown friction coefficient y. The procedure is illustrated in Fig. 3, 
where the inverse of fN(Z) is plotted versus v/z; the results will be discussed 
in Section 6. Note  that taking z = 0 leads to the interesting sum rule, valid 
for any finite system 

< a,. >___._~ + < a , ' a ~ + k > ,  = 0  (25) 
2 k=l 

The present derivation of  7 assumes the validity of  the form (A.6) for the 
momentum ACF, which we have explicitly checked by M D  simulations as 
shown in Section 3 and Fig. 2. In Appendix B, we present an alternative 
method for extracting y from the Laplace transform fN(z), without 
explicitly assuming the exponential form of the momentum ACF. For  small 
enough values of z the method of Appendix B is equivalent to the one 
sketched in this section. 

5. N E M D  ESTIMATE OF THE FRICTION COEFFICIENT 

Linear transport  coefficients may be calculated either by G r e e n - K u b o  
formulas like Eq. (6), based on the relaxation of  spontaneous thermal fluc- 
tuations of the system at equilibrium, or by measuring the response of the 
system to a weak external perturbation, as simulated by nonequilibrium 
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molecular dynamics (NEMD). c~'12~ In order to determine y by NEMD, we 
consider the following process. Starting from an initial equilibrium situa- 
tion, the infinite-mass test particle is set in motion at t = 0 and pulled 
through the fluid at a constant velocity u. The fluid, which was initially at 
rest, will, after a transient regime, relax toward a stationary state. This 
relaxation may be characterized by the time dependence of the fluid (or 
center-of-mass) velocity: 

1 
v(t) = ~ m  <P(/)>u (26) 

and of the temperature, which increases due to dissipation. The drift 
velocity u of the test particle will be chosen sufficiently small, so that the 
hard-sphere bath may be assumed to be capable of relaxing all stresses and 
inhomogeneities instantaneously (adiabatic assumption); in particular, the 
bath temperature may be regarded as homogeneous. 

Under these conditions, the relaxation of the fluid velocity and of its 
internal energy q/ are governed by the coupled phenomenological equa- 
tions 

dr(l) 
dt = - y [ v ( t ) - u ]  (27) 

clou(t_____)) = ~ [ v ( t )  - u ]  2 ( 2 8 )  
dt 

The second equation is an expression of the first principle of thermo- 
dynamics (the increase of q/ is equal to the rate of frictional dissipation). 
Since for hard spheres the internal energy reduces to the thermal kinetic 
energy of the particles, Eq. (28) determines the time dependence of the 
temperature 

3 
NmkB d~(tt)= r [v(t) - u] 2 (29) 

2 

Moreover, the temperature dependence of the friction coefficient is trivial 
for hard spheres, since a simple scaling argument shows that it is propor- 
tional to the collision frequency v, which, according to Eq. (18), varies as 
w/-T. Hence, choosing the initial temperature To of the fluid as a reference 
temperature, for which ? = ~o, we may write ~ = ~,o(T/To) ~/2 and hence the 
system of coupled equations to be solved reads 

dr(l) (T( t ) )  '/2 
dt = -Yo \ To J [ v ( t ) -  u] (30) 

Nmk~ dT(t) (T( t ) )  w2 
T =-yo \--T-~-o j [ v ( t ) - u ]  2 (31) 

where v(t)= Ivl [note that v(t) can only be parallel to u]. 
822/76/1-2.36 
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The system (30)-(31) is easily solved as shown in Appendix C. The 
solution is 

T(t)  ~ (To /T: ) ' lZ+tanh[(7o /mN)(T: /To)  L/z t] ~2 
T: = [1 + (To~T:)'/2 tanh[(YolmN)(T:lTo)  '/2 t ] j  (32) 

v(O=u.l t, r : -  To / (33) 

where T i = To + i 2 gmu denotes the final temperature of the fluid (stationary 
state). 

In the NEMD simulations, T(t) is calculated from 

N 
3 _ m  E NkB T(t)  - 2 ,.=~ [v~ - vB(t)] (34) 

and v(t) is obtained by averaging the fluid velocity over n independent 
cycles of the above-mentioned nonequilibrium procedure. The value of 
7o may then be extracted by fitting the measured relaxation of the tem- 
perature to the theoretical prediction (32). An example is shown in Fig. 4, 
illustrating the excellent agreement between the equilibrium MD and 
NEMD estimates of the friction coefficient. 

1.01 

[-., 

0 20  40  
t/To 

Fig. 4. Evolution of the normalized temperature T(t)/T o of the fluid as a function of reduced 
time t/zo [zo=(ma2/knT)ll2] when the infinitely massive sphere is pulled at a constant 
velocity u. The solid line is obtained by averaging over 50 cycles in a NEMD simulation of 
a system characterized by N = 200, r/~ a = 0.35, Z'/a = 1.5, and u = 0.2o/30. The dashed line is 
the solution of the phcnomenological equations (27)-(28) with ~,/mr 16.28. 
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6 .  N U M E R I C A L  R E S U L T S  

T h e  three  a f o r e m e n t i o n e d  m e t h o d s  have  been  used to c o m p u t e  the 

fr ic t ion coefficient  7 for va r ious  size ra t ios  ,S/a and  densi t ies  of  the suspend-  
ing fluid. I t  is c o n v e n i e n t  to define the effective pack ing  f rac t ion  of  the 

la t te r  f rom the  n u m b e r  N of  spheres  and  the v o l u m e  V' accessible to thei r  

centers  in the s imu la t i on  cell of  to ta l  v o l u m e  V, n a m e l y  V ' =  V -  
(n/6)(_r + tr) 3, a c c o r d i n g  to 

~ N  
r/~rr = g ~-7 ~r3 (35) 

A s u m m a r y  of  all runs  car r ied  ou t  in the present  s tudy  is g iven  in Tab le  I. 

The  n u m b e r  N of  spheres  in the s imula t ion  cell was increased,  for increas-  
ing ra t ios  S/a, in o r d e r  to ensure  that  the box  length  L = V1/3 was a lways  

s ignif icant ly la rger  t han  the d i a m e t e r  Z" of  the fixed sphere  (L~>4L" 

t h r o u g h o u t ) ,  in o rde r  to avo id  u n w a n t e d  in terference effects be tween  the 

veloci ty  fields a r o u n d  per iod ic  images.  The  results r epor t ed  by Alley and  

Table I. List of  M D  Runs" 

N X/a r/r v* 7* ~(7") 7/71 

108 1.0 0.15 2.16 1.12 0.04 0.84 
108 1.0 0.24682 4.86 1.02 0.02 0.76 
200 1.0 0.24682 4.83 1.01 0.04 0.75 
200 1.0 0.3 7.02 1.01 0.03 0.75 
200 1.0 0.35 10. I 0 0.95 0.03 0.71 
500 1.0 0.35 9.98 0.90 0.04 0.67 
200 1.5 0.35 18.09 0.90 0.04 0.67 
500 2.0 0.24682 12.32 0.82 0.04 0.61 
500 2.0 0.3 18.46 0.72 0.05 0.54 
500 2.0 0.35 26.84 0.72 0.03 0.54 
500 2.0 0.37 31.07 0.76 0.04 0.57 
800 2.5 0.24682 17.52 0.68 0.04 0.51 
800 3.0 0.24682 23.39 0.63 0.03 0.47 

1500 4.0 0.24682 38.04 0.53 0.03 0.39 
1800 4.5 0.24682 46.66 0.49 0.04 0.36 

"The first three columns give, respectively, the number of fluid particles, the ratio of 
Brownian to fluid particle diameters, and the effective packing fraction of the bath. The last 
four columns list the different quantities computed in the simulations. Column 4 gives the 
dimensionless collision frequency v*=v(ma:/kBT) m between the fluid and the fixed 
Brownian particle; column 5 is the value of the dimensionless friction coefficient 7 *= 7/my; 
the estimated error of this value is given in column 6; and column 7 gives the ratio between 
the computed friction coefficient 7 and its Enskog value ~,j as defined in Eq. (3a). 
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Alder t9~ are generally for larger system sizes, but those corresponding to 
comparable physical conditions are compatible with the present results. 
The dimensionless rate of collisions between the fixed X-sphere and the 
a-spheres, v* = v(ma2/kB T) '/'-, was estimated by direct counting during the 
MD runs. The measured values, listed in Table I, are in good agreement 
with the collision frequencies estimated from Eq. (18) on the basis of the 
scaled particle approximation r f o r / q ( ( a  +X)/2);  the latter estimates lie 
typically 2-3 % above the MD data, because scaled particle theory slightly 
overestimates the contact value of p"q. All runs extended over 20 x 10 6 colli- 
sions, of which at least 105 were collisions suffered by the fixed X-sphere. 

The values of reduced friction coefficient 7" =y/mv listed in Table I 
are averages of the estimates based on the three independent methods of 
calculation sketched in Sections 3-5, respectively. The largest deviation of 
these estimates from the mean A(y*) is also given for each run; this crude 
estimate of the error bar suggests a statistical uncertainty of typically 5 % 
on 7. 

According to Eqs. (3a) and (18), the Enskog value of the reduced 
friction coefficient is just 

y ,  = Y__L = 4 (36) 
mv 3 

The ratio of the "exact" (MD) and Enskog values of the friction coefficient 
is also shown in Table I. The ratio Y/Yl is always less than one and, as 
expected, the agreement between y and Yl worsens as the packing fraction 
r/err increases, for fixed size ratio Z/a, or as S/a increases, for fixed r/err. 

It is also of interest to correlate the calculated values of y with 
estimates based on the familiar Stokes relation derived from macroscopic 
hydrodynamics, t~ namely, with stick boundary conditions, 

7s = 3n~d (37) 

or with slip boundary conditions, 

ys = 2nqd (38) 

where q is the shear viscosity of the suspending fluid, calculated for a 
packing fraction qcrr, and d is a suitably chosen hydrodynamic diameter. It 
is clear that, in view of the size ratios investigated here, the comparison with 
the predictions of a hydrodynamic calculation are of a purely indicative 
and phenomenological nature. In particular, a fully meaningful comparison 
should be made with the results of a hydrodynamic calculation under iden- 
tical periodic boundary conditions. We did not attempt such a nontrivial 
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calculat ion,  and believe that  it would be more  instructive to investigate 
larger system sizes in order  to reduce the influence of  the per iodic  
boundar ies  and  to explore any systematic N dependence.  

If stick b o u n d a r y  condi t ions  are assumed [Eq.  (37)-I, the op t imum 
hydrodynamic  d iameter  is found to be very close to the bare  d iameter  Z 

and nearly independent  of the size rat io  Z/a. This is i l lustrated in Fig. 5a, 
where the rat io  y/ (3m/Z)  (with r / t aken  from the work of Alder  et alJ 14)) is 

(a) 

[,.1 

o3 

. . . . . . . . .  . . . .  . . . . . . . .  . . . .  

, I , I , I J 

2 x / ~  3 4 

(b) 

ix. 

I 

, I , I , I , 

2 ~/o" 3 4 

Fig. 5. (a) Ratio of the friction coefficient ), over its "stick" Stokes' value 3told as a function 
of size ratio Z/o for r/r 0.24682. The "hydrodynamic" diameter of the Brownian sphere is 
taken to be d=.S. (b)Same as above, but assuming slip boundary conditions with d= 
X+ 2.4o (see text). 
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plotted versus the size ratio Zig. The apparent validity of stick boundary 
conditions is rather unexpected, and may be an artifact of applying a 
macroscopic relation to the case of modest size ratios. 

Rather, we expect slip boundary conditions to hold in the limit Z-> g, 
where d should coincide with X. When the ratio Zig is finite (but still much 
larger than 1), the hydrodynamic diameter d may be somewhat larger 
than Z, with the slip boundary condition applied at a certain distance from 
the surface of the Brownian sphere. In the case of plane walls, it has been 
shown that the hydrodynamic boundary condition on the velocity field 
applies at a surface that is separated from the solid by about one layer of 
fluid atomsJ 151 If we assume this result to be still valid in the vicinity 
of a curved surface, we should identify the hydrodynamic radius of the 
Brownian sphere with the first minimum in pCq(r), which occurs at about 
�89 1.2g, so that the appropriate hydrodynamic diameter d should be 
roughly equal to Z+2 .4g ;  this effective diameter may vary with the 
packing fraction of the suspending fluid. In Fig. 5b, the resulting ratio 
yl(2nqd) is plotted versus Zig. As expected, the ratio is seen to approach 
1 for large size ratios, but simulations for still larger size ratios are clearly 
needed to confirm this trend. 

7. C O N C L U S I O N S  

In this paper we have presented numerical estimates of the friction 
coefficient exerted by a fluid on a moving test particle in the model case 
where the Brownian and solvent particles are elastic hard spheres. Three 
independent methods have been devised and used to compute the value of 
the friction coefficient from simulations of a finite system. In the first two 
methods use was made of the natural link between the thermal fluctuations 
of the fluid in the presence of the (immobile) sphere and the pheno- 
menological friction coefficient ~. The third approach is different in spirit 
since it considers ~ as the susceptibility of the system under the action of 
a weak external perturbation. All three methods lead to comparable values 
of the friction coefficient within an accuracy of 5 %. 

As expected, the Enskog approximation for the friction coefficient 
breaks down as the packing fraction r/err and/or the size ratio Zig increase. 
This is due to the increasing importance of dynamical correlations in the 
fluid arising from recollision events between the suspending fluid and the 
Brownian particle. 

For a fixed packing fraction we compared the computed friction coef- 
ficient with its stick or slip Stokes estimate, involving the "hydrodynamic 
diameter" d of the Brownian particle. Somewhat surprisingly, the assump- 
tion of the stick boundary condition leads to a hydrodynamic diameter d 
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which is nearly independent of the size ratio Z/a and close to Z. 
Nevertheless, in the macroscopic regime (Z" >> tr) we rather expect the slip 
assumption to hold, with a hydrodynamic diameter d which should not 
differ significantly from Z. For lower size ratios d should still be 
somewhat larger than Z, since the slip boundary condition (inherent in the 
hydrodynamic calculation) is expected to apply at a distance slightly inside 
the fluid (approximately the thickness of one layer of fluid atoms). The 
ratio between the computed friction coefficient and its Stokes value 
seems to tend toward 1, which would validate the previous estimate of the 
hydrodynamic diameter for large size ratios. However, a definitive valida- 
tion of this result requires larger-scale simulations for significantly larger 
size ratios than those explored here (Xla ~ 4.5). The present results suggest 
that a crossover from stick to slip boundary condition may take place at 
some intermediate size ratio Z/a. 

APPENDIX  A. THE ORDER OF LIMITS IN THE 
CALCULATION OF THE FICTION COEFFICIENT 

Consider a finite, periodic system of N spheres of mass m enclosed 
in a volume V in the presence of an infinitely massive test particle (the 
Brownian particle) fixed at the origin. Let 

N 

P(t) = ~ mvi(t) -= Nmv(t) (A.1) 
i = 1  

denote the total momentum of the N spheres (the bath) and v(t) the center- 
of-mass (or fluid) velocity; P and v fluctuate because of collisions with the 
test particle. Since ~-~0(t), defined in Eq. (6), is the instantaneous rate of 
momentum transferred from the bath to the test particle, we must have 

,~o(t) = --P(t) (A.2) 

where the dot denotes a time derivative. Hence 

lim l imth<~o(0 ) -~o ( - - r )>N&= -- lim l imth<P( t ) -P (0 )>N (A.3) 

Now consider a thermal fluctuation of the momentum of the bath. If the 
Brownian particle is sumciently large, the regression of the fluctuation must 
be, according to Onsager's principle, governed by the macroscopic equa- 
tions of hydrodynamics. According to the latter, the force exerted by the 
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flowing fluid on the Brownian particle is proportional to the momentum 
P(t) carried by the fluid, i.e., to the fluid velocity v(t)= P(t)/Nm, 

7 p(/) (A.4) ~o(t) = Yv(/) = ~ m  

or equivalently, in view of (A.2) 

P(t) = -- 1 P(t) (A.5) 
l" N 

where the momentum relaxation time is '~N = Nm/y. Hence 

< P(t)" P(0) )u  = ( IPI2)u e-'/ '~ 

= 3Nmk B Te - ,/,N 

It follows that 

(A.6) 

- < P ( t ) ' P ( 0 ) ) u  3 N m k B T e - ' / "  
T N 

= 3ka lye -'/~N (A.7) 

When applied to (A.7), the order of limits in Eq. (A.3) yields the friction 
coefficient 

(A.8) - lim limth < P(t)" P(0) )N = 3kB T7 
t ~ o o  

(A.9) 

while inversion of the limits always leads to a vanishing result: 

- l imth  lim < P ( t ) ' P ( 0 ) ) u = 0  
/ ~ o c ,  

APPENDIX B. S M A L L - Z  L IMIT OF THE LAPLACE 
T R A N S F O R M  OF THE FORCE ACF 

A standard generalized Langevin (or memory function) analysis (see, 
e.g., ref. 16) of the time evolution of the total momentum ACF leads to the 
following relation between the Laplace transforms fN(Z) and f*u(z) of 
the force ~0(t) [cf. Eq. (7)] and of the projected force ~-*o(t), i.e., the 
component of ~o(t) orthogonal to p,(3) 

f~ (z )  = YN(z) (B.l) 
1 - f u ( z ) / [ ( 3 N m k B  r )  z] 
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Taking the thermodynamic limit of both sides of this relation, we find, 
remembering Eqs. (20) and (22), that 

1 
y* -= [limth f~(z)]_-=o = y (B.2) 

3kBT 

However, while for a finite system fN(Z = 0 ) =  0, this is no longer true of 
- - t  Z f N ( ) ,  which has a finite value in the limit z ~ 0 for any N. Hence in view 
of Eq. (B.1), we may expect the nonzero thermodynamic limit 

1 
y = ~ [limth fN(Z)]: =0 (B.3) 

to differ from y~ = f ~ ( z  = 0)/3kB T only by a 1/N correction, f~ ( z  = 0) may 
be estimated by substituting the small-z expansion of fN(Z) into the r.h.s. 
of Eq. (B.I). Due to the fact that the Brownian test particle is fixed (infinite 
mass), the force ACF should not exhibit a long-time tail associated with 
hydrodynamic backflow effects, "71 so that fN(Z) may be assumed to be 
analytic in the z---, 0 limit: 

fN(Z) = az + bz 2 + dg(z 3) (B.4) 

and hence 

az + bz 2 + ~(z 3) (B.5) 
f~ (z )  = 1 - a/3NmkB T -  (b/3Nmka T)z + (9(z 2) 

Since f ~ ( z  = 0) r 0, we necessarily have 

a = 3Nrnka T (B.6) 

and we are left with 

1 f ~ ( z = O ) =  
Y ~ - 3 k B T  

3N~m2ka T 
(B.7) 

The coefficients a and b follow from a formal expansion of the r.h.s, of 
Eq. (24) in powers of z, i.e., 

and 

a = - -  ~ (ac'a,.+k[V(tc+k--tc)]),. (B.8) 
k = l  

1 ~ (ac.a,..k[v(tc.k_tc)]2)c b=~,=, (B.9) 
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In principle, the right-hand sides of Eqs. (B.8) and (B.9) may be estimated 
from MD simulations; since a is known exactly from Eq. (B.6), the calcula- 
tion of (B.8) could serve as a check of the simulation, while the calculation 
of (B.9) would yield an estimate of )'*u via Eq. (B.7), and hence of 7, within 
a correction (9(l/N). This procedure for obtaining y was not attempted 
here, because the quantity to be averaged in Eq. (B.9) may be expected to 
exhibit large statistical fluctuations due to the rapidly increasing factor 
(t,.+k-t,.) 2 which gives considerable weight to the correlation ac" ac+k of 
collisions widely separated in time. 

The important point, however, is that the coefficients a and b of the 
Taylor expansion ofjTN(z) as given by Eqs. (B.6) and (B.7) agree with those 
obtained by expanding the r.h.s, of Eq. (23), based on the (reasonable) 
assumption of exponential decay of the momentum ACF [cf. Eq. (A.6)]. 
The procedure for obtaining ~, described in Section 4 is thus seen to have 
more general validity. 

APPENDIX C. VARIATION OF TEMPERATURE WITH 
T IME IN N E M D  S I M U L A T I O N S  

The resolution of the system of differential equations (30)-(31) is 
simplified by using dimensionless variables defined by 

v - u  T ~'o t (C.1) 
X - ( k . To /  m ) l/2 ; Y = T"--oo ; r = "~m 

The system to be solved then reads 

ay= 2_ 47 x,_ 
dr  3 

(C.2) 

(C.3) 

supplemented by the initial conditions 

- - U  

X ( r  = O) - -  (k B To~m),~2 

y ( z  = O) = 1 

(C.4) 

Multiplying both sides of (C.2) by x and inserting into (C.3), one finds 

dy 2 d �89 2 

dr 3 dT 
(c.5) 
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so that, with the use of (C.4), 
y ( r ) -  1 1 2 = -~[x (r)-x2(0)] 

We thus obtain a closed equation for y: 

(C.6) 

dy( r ) 
= 2 v/y {ys-y(r)} (c.7) 

dr 

where we introduced the dimensionless final temperature Yr = Tf/To defined 
(as in the main text) by 

x2(0) 
yf= 1 + - - 7  (C.8) 

Equation (C.7) can then be rewritten as 

f l"( ~ dv = 2T (C.9) 
x/~ (yf--  v) 

The left-hand-side of (C.9) can be integrated using the result 

- 2 log [ tan ( a r c c 2  x / ~ ) ]  + C (C.10) f dv 
x/~ (1-v) 

where C is an integration constant, y(r) is thus obtained as the implicit 
solution of 

[tan[(arcc~ (C.11) 
log [ tan[{arccos[(1/yl)l/2]}/2] J 

Inversion of (C.11 ) leads, after a straightforward calculation and returning 
to the original variables (t, v, T), to the final result (32) for the time 
dependence of the temperature. On the other hand, the relation (33) 
between the fluid velocity v(t) and the temperature T(t) can be derived 
directly from Eqs. (C.6) and (C.1). 
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